Tuesday, February 17, 2015

RRR explained by open sea water and the location of the coldest Atmosphere


~The cold temperature North Pole is oscillating almost always at the same location

Complaints about extreme snowfall over the NE North American coast have nothing to do with Global Cooling. Rather everything to do with a wide area of missing sea ice. Some attribute correctly to these steady days of ground hog day like weather over the entirety of North America to Cristopher C Burt's analysis of RRR. There is a pressure ridge remarkably steady over the West North American coast area. This ridge does not move a lot like the sea ice boundary next to the Greenland Sea having sea water largely made open by recurring repeating Northeasterner Cyclones being part of an hemispheric wide circulation feedback:


Last month or so General circulation summary, repeated cyclones originating from about Florida USA and ending South of the Island of Novoya Zemlya, Russia. What attracts winter Gulf Stream Cyclones is North Atlantic open water, the more open, the longer they last. The longer they endure, the more a chance they can morph together and form an even larger Cyclonic area. A greater melt than usual of sea ice over the North Atlantic, as what happened during the last few years, exacerbated more precipitation over the entire North Atlantic area at times striking one country more than another:


At times, the shear number of cyclones morphed over a wide Arctic area, making Greenland the center of one very big cyclone. This nurtured a zonal coldest atmosphere of the world I call the Cold Temperature North Pole. But the predominant circulation from this structure is colder Central North Russian air flowing all the way to Ontario by way of the Pole. Next to this flow is coldest air thriving in darkness and is supported by the Straospheric Polar Vortex near -80 C center, together they contribute to the atmosphere compressing, becoming thinnest but really cold and dense, where all around the winds are greatest, this gives the polar jet stream as well, the center of which is the CTNP.:


Usually the CTNP migrates, fractures, is bounced around like a top, but this year it remained near North of Hudson Bay and Hudson Strait area. South Baffin Island Canada was very cold this winter, but Alaska very much opposite. The jet stream remained almost fixed in location, this guaranties the RRR to stay literally in place, for as long as the CTNP doesn't move, so does the jet stream. In green the jet stream largely placed by the thinner atmosphere either by extreme cold air or by strong very low in pressure cyclones. Cyclones in Red dominate the North Atlantic and Pacific. Whether they head North or not influences the Northern Hemisphere weather world wide.


The location of the CTNP literally dictates weather and impacts climate in the long run, especially if it is steady in location . This winters imprint is already set, a large area of sea ice, roughly centered 90 degrees East and West longitudes should have thicker sea ice. This gives a familiar look reminiscent of 2007 minima ice bridge. The continuous circulation from Central Russia to Ontario also means much drier, less snow covering the ground or sea surface, this implies a very early melt where ice is thinnest. Atlantic Cyclones repeatedly ending near Novaya Zemlya kept more open water over the North Atlantic and Greenland sea, the lately created sea ice there will be much thinner and this affects the melting season outlook. Its the combination of the colder Arctic Archipelago, the thicker 90 degrees longitude sea ice and perennially cold in darkness Greenland which locate the CTNP North Hudson Bay. As Atlantic Cyclones continue foraging Northeastwards, there is no reason to believe that the jet stream and RRR will change in position soon. If there was more sea ice over the North Atlantic, the weather would have been dramatically different. But the steady nature of current circulation pattern has everything to do with the warming of the planet and more melted sea ice.. WD February 17-18,2015

No comments:

Post a Comment