Thursday, June 30, 2016

Effects of greater snowfall are lasting in some regions.


Lets focus on the Eastern  NW passage where there was more snowfall:

What happens with more snowfall has long lasting implications for sea ice. First we have greater cooling of top of sea when it falls in autumn,  the snow floats doesn't melt,  acts like a proxy ice cover, and accelerates the grey ice sea ice genesis.  This creates more rapid onset of fast ice.  Now, lets fast forward to its effect to this early summer,  many months later from October-November just past.  EOSDIS 
pictures of June 29, 2015 and 16 are marked upper left corner.  But the great deal of snow during winter of 2015-16 affected sea ice morphology,  and therefore its current cooler summer weather.
Look carefully where the snow remains in 2016 and you will inherently find more sea ice,  because snow help made it,  and also created a buffer slowing its melt.   But the larger implication is the local  early summer weather snow and greater sea ice extent created,  cooler,  and also strangely but so,  thinner sea ice.   Winds of 2015 in the same area as on this GIF animation were dry,  there was  less snowfall,  which happened more on the western European side of the Arctic which happens to have far less sea ice extent on its coastal shores.  2015 sea ice eventually became thicker when formed,  but open water Polynyas in 2015 were much larger because there was a great deal of wind from the North (not unusual) keeping top of sea water from forming ice .  In late spring 2015,  the land warmed quicker, local weather was equally warmer and residual July snow footprint far lesser. WD June 30,2016


Tuesday, June 28, 2016

Near North Pole current Ice condition, between a rock frozen ice and a cloudy cooler place.

   June 28,2016, near North Pole ice conditions show "pancakes"  typical of fluid sea ice,  terribly broken up.  Very little sign of old ice.  But there was extensive compression during the Spring just past,  this can be its undoing,    a strong consolidated pack cools the air more,  good spawning ground for Highs.

  June 30 2013, same location,  offered a glimpse on the damaged caused in 2012 melt.  However,
the degree of open water caused by much thinner sea ice triggered what many contrarians deemed incorrectly  "a cooling" especially at minima mid September 2013, because substantially less ice apparently melted, not so, it was an extent calculation 15% problem.    This open water caused extensive Lows to penetrate and remain over the ice Pack throughout the summer.    Current situation in 2016 seems between a strong consolidated pack and a loose Cyclone-genesis driven summer.  The danger for 2016 sea ice is for less clouds to form at this time,  un-likewise 2013,  this is very possible. WD June 28 2016

Monday, June 27, 2016

Despite contrarian winds, Beaufort Gyre current is still very strong

NASA EOSDIS 11 days of June 2016 selected at about 2 or 3 day intervals.  You can see cyclones moving through along with contrarian winds, there were quite a few small cyclones hanging about during the same period.   But nothing ,  literally nothing stopped the surface current moving the ice  clockwise.  This is explainable by 3 of many sea ice displacement vectors.  The coriolis effect, note its not a force,  sea ice momentum movement (a seldom discussed  displacement vector) and finally the Beaufort Gyre itself, reinvigorated by months of clockwise circulation of mixed aged pack ice.   This implies any lull in winds will cause compaction to occur nevertheless.   wd June 27 2016.

Tuesday, June 7, 2016

The models may be calculating the sea ice surface to air interface temperatures incorrectly

~ Some surface buoys corroborate the prime horizon refraction rule

   Having dealt before with doubtful calculations output by NOAA NCAR/NCEP with respect to top sea ice temperature,  it seems suspicion confirmed by remote weather stations placed on sea ice.   The ice core temperature minimum of 2015f (82 N 147 W)  in particular on June 5 was really cold with lowest sun position, but as usual,  solar radiation whacked out any precision with top thermistors most times,  leaving us with only its average surface temperature to contemplate.  It was -4.8 C for that day.  At the same location NCAR/NCEP calculated -3.   Now consider that an actual measurement can be done from space,  the skin temperature or ice surface,  it should be quite precise.  NCAR/NCEP result was between -1 and 0 C.   However, this is a violation of sea ice refraction prime rule,   top of sea ice was never observed warmer than surface air.    To cap this off,  2015f reported  12:00 UTC surface temperature at  -7.39 C,   now we turn to nearby sea ice surface weather stations at 12:00 UTC 80 N 110 W read -1,   76 N 160 W read -2.   Welcome to the world of metric confusion,  when temperatures seem really irregular.  Another surface Auto station on Prince Patrick Island reported a more probable -7 (76 N 120 W). 

     To make sense of all this,  one must weed out possible errors,  to play it safe,  only 2015f surface measurements seem accurate along with surface temperature from land based auto station.  Why so?  Because thermistor 2,  likely in ice, recorded -6.7 C at 12 UTC,  with a low sun solar radiation corruption.  Later, the morning less bombarded with photons thermistor  shoots up 5 C in 8 hours  with higher sun. 2015f reported surface temp -2.9 C at 20:00 UTC while same colder morning thermistor reported +0.17 C,  one would expect similar rise in temperature between surface and top of sea ice, but sea ice gained more degrees than surface measurement,  again highly unlikely since sea ice and snow have very strong albedo,  unless of course there is water on the said thermistor surrounded by sea ice.

   No wonder Arctic models have trouble being precise,  there is very little accurate observations to compare their output with.  


        June 5 1200 UTC CMC surface analysis.

NOAA surface skin analysis,  apparently the sea ice average temperature was warmer than the surface air over most locations.  Mass Buoy 2012f recorded an average  surface temperature -4.8 C,  3 degrees colder than model skin temperature calculation. 
The daily average surface temperature of about -3 C over Beaufort Gyre was 2 C  colder than top of sea ice "skin" average which is in violation of refraction prime rule.   In this example, the adiabatic lapse rate between top of ice and surface measurement is a mere 1000 C/Km, the stuff of road asphalt.  2015f same day average surface temperature was about 2 C colder.   In somewhere lies a geophysical modelling algorithm error.  WD June7,2016


Sunday, June 5, 2016

Sometimes Top and bottom Melting looks like this

  At onset of top melting the horizon appears slightly jagged,  water is setting on top of sea ice.  The ice core is very warmed yet colder than the air,  the horizon is slightly above astronomical horizon,  but the new surface water brings it down.  wd June 5 ,2016