Sunday, January 10, 2021

Complex temperature role reversal. Siberia, from hottest summer to coldest thus far winter

 ~The reign of Ellesmere and North Greenland Cold temperature North Pole has been seriously challenged

~Rather changed,  the CTNP of winter 20-21 was often found in Central to Eastern Siberia.

~Is rather an indication of a moderate La-Nina,  and something as simple as the nature of surface snow. 

    2020 will be likely #1 shared  with 2016 Global warmest year in history,  as predicted in April here,  from the same EH2r projection page a small El-Nino,  or trending El-Nino happened April-May (the sun disk refraction method expected so) then a modest La-Nina gradually came about (very difficult to predict because of this blob,  ENSO trends were strongly masked by the North Pacific warm temperature blob. One of the greatest factors of 2020 making the warmest Global temperature as was in 2016 (the year of super strong El-Nino) ,  was the worldwide diminution of pollution activities due to Covid-19.   Summer came to be hot because of this, with dire consequences including USA West coast very damaging Armageddon wild fires,  along with Siberia temperatures at +30 C.   

    Arctic sea ice extent at September minima came very close to beat 2012,  just off prediction by 1 step , #2 least expansive sea ice at minima,  this still has serious consequences though,  which brings us to the topic at hand.  Since onset of winter the prime CTNP,  was mostly centered in Siberia, a strange turn of events, the hottest Siberian summer heat wave in history, preceded the coldest spot in current winter at about the same region. It may be a matter of snow,  largely how compact it is,   in the Canadian Arctic, with snow covering the permafrost was/is strangely  less compacted (due to extensive cloud cover and record warm temperatures),    having greater insulation properties,  this should have reinforced cooling especially in total Darkness:

SAR image 10-01-21 ,  Ellesmere Island, likely warmed by thinner sea ice (black) everywhere surrounding, except its Northern most point.  A strong CTNP often hovers over this Island year round.   The dark Fjords are all with fast ice (new and thin), except for a few multi year floes.  There is apparently a great deal of snow over Ellesmere,  not having any effect on  pronounced cooling,  as one would expect.  

    While Siberia seems to have less cement snow cover:

East Siberian sea shore,  likely with a lesser snow carpet than Ellesmere,  the recently frozen sea ice (dark area), has white layers in it,  meaning different age of sea ice or ridging due to movement.  SAR satellite picture acquires some snow on land on this band,  not so for sea ice.   

    Given that sea ice was second all time lowest extent at minima,  on both Arctic continents,  why is Siberia CTNP dominating at present? 

One good reason is the lower latitude snow line on the Eurasian side, but how does Siberia super hot summer morph into the coldest neighborhood of winter?  


The other reason was explained in April 2020 as linked on the URL above,  2020 summer CTNP was largely at the North Pole,

continuing all the way to autumn,  the Eurasian flow of air was from Ural's Eastwards,  a drier atmosphere, making the sudden onset of radiative cooling with lowering sun more impactful in Russia.   There is another plausible explanation,  La-Nina and the said Pacific warm temperature blob.  La-Nina effects were largely nullified over much of North America,  because of this Temp. blob.  However, the very warm North Pacific made it warmer for North America,  certainly not giving perfect weather, because of expansive prolonged periods of cloudiness.  La-Nina however modest,  is still about,  this reduced cloud cover all over the world except East of the North Pacific.  In the Arctic,  the upper atmosphere was indeed largely dry except for the very lowest altitudes,  all that open water from 2nd lowest historical Arctic sea ice extent has certainly made the Arctic warmer and snowier,  but the Polar  upper atmosphere was consistently devoid of moisture above about 1000 meters or so.  The Canadian vortice,  usually one of two vortices forming the Polar Vortex,  got less dominant and shrunken,  while Siberia with a dryer sky cover,  with lesser clouds.  acquiring snow faster and earlier,  was sufficient to shift the location of the coldest vortice of the Polar Vortex,  to reside East of Northern Russia.  WD January 10, 2021


 



Sunday, October 25, 2020

Autumn 2020 great sun disk expansions, a measure of current extreme warming on either land and sea.




October 21 shots, with vertical diameters of 30.1 arc minutes at 1.5 and 1.2 degrees elevation,  Pretty much as expanded as can get,  surely an Arctic record. This came as fall measurements,  not frequently done because of increased moisture clashing with lesser solar radiation,  started with normal vertical diameters,  then a mid October warming caused this anomaly.  Entirely due to record low sea ice extent and re-injection of heat from the record warmest Arctic Ocean to the lower atmosphere.
These captures also indicated the viable existence of anomalous atmospheric warm spots,
 not mixed yet with the overall wider encompassing likely cooling Autumn air.  A rather infrequent observation while monitoring sun disk diameters.  The more expanded the vertical disk the warmer the air,  in fact its the most accurate measure of total atmospheric temperatures I know about.  2020 sea ice extent minima narrowly missed beating 2012.  But the current nature of remaining sea ice is overall thinner, therefore 2020 at this time is lowest extent in history.   A true indicator of unrelenting further melting in the cards. The implications lesser se ice are felt throughout the Northern Hemisphere,  the physics of which will be explained in subsequent article.  WD October 25 2020


 

Friday, August 28, 2020

Wretched state of sea ice in unfamiliar sector can accelerate flow exit towards Greenland sea

~A large water anomaly in the Greenland to Pole sector may cause even more exodus of sea ice

~2 nautical miles a day is about the average flow of sea ice,  with open water about this speed  easily can be multiplied quite a lot.

~83 North 8 West open water anomaly just had 20 km displacement in 2 days 3 times the normal speed:

     Astounding North of Greenland open water zone has just facilitated a massive displacement of sea ice,  which may not be read as melting,  but will surely result in greater melting.  


   CMC 0600 UTC  surface analysis displays a normal general circulation picture for late August,  which may result in even further melting results.  Of Note centre 1035 mb High  has clear air at its core centre, which indicates a switchover to fall scenario.  A similar in position long standing High pressure in June had mainly cloudy skies making remote sensing analysis difficult,  not counting as well the cloud saving nature it had of preserving sea ice.  Late August 2020 surface temperatures are also very warm, this will further delay the minima sea ice extent date.  WD August 28 2020

Monday, August 17, 2020

Slow cloud induced last month melting surprise

 ~ The speediest melt rate since 2012 and 16 slowed by weather dynamics is not quite finished surprising yet

~The current latest melting appears innocuous but is huge

August 13-17 North Spitzbergen   50 Km Resolution:

   Impressive Northwards massive melting despite wind flowing towards the South (roughly towards the right).



   Goodbye Waves Russian side morphing rapidly on Center Russian side of the Pole.  Somewhere about 10 km square melting.


WD August 17 2020



Friday, July 31, 2020

Megamelt in progress despite normalized circulation

~All experiences just gathered has helped depict the near future sea ice of the Canadian Alaskan sector of the North Pole; it is melting extremely fast,  most of it will vanish.
~The current weather circulation pattern is what one would expect for this time of summer
~Nearly 3 weeks long anomalous High pressure centred on Pacific side of the Pole induced ice flow has stalled and or reverting in the opposite direction,  giving the illusion summer 2020 melt has stalled,  but it is simply changing course. 



NASA EOSDIS North of Alaska and Beaufort sea ice has dramatically changed state from  somewhat steady consolidated pack to extremely unstable about to melt all pattern,  in a matter of 7 days.  It means the ice was very thin but strong enough to keep up appearing normal on the 24th of July.   Preceding experiences of today's event, as you can read previous recent EH2r articles,  basically foretell a massive area,  the Arctic Basin Gyre zone liquid sea surface is about to resurface again from the veil of its ageless ancient perineal cover. WD July 31 2020

Friday, July 24, 2020

North Atlantic hyper melting ; when sea ice is a pack it can easily go into warm waters

~North Atlantic slush front
~Day fast changing Goodbye Waves


   EOSDIS July 23-24 2020 North Atlantic by Franz Josef Islands,  total chaos reigns,  as the loosened  ice pack heads towards warmed surface waters,  massive melting ensues.    Note the rapid disappearance of goodbye wave geometry in 24 hours,  in particular the ice about vertical striations middle of July 23 capture,  the G.W. morph in shape very rapidly,  an indication of hyper speed melting.  WD July 24 2020

Sunday, July 19, 2020

Laptev sea: Extreme melting in the middle of a pack

~Again a rare sight,  contrary to usual water engulfment,  sea ice melts in the middle of a pack
~This loop offers an explanation of the warm High over the Arctic Ocean,  sea ice on the Russian side of the Pole is much thinned. 


   Laptev sea ice melt speeds continue to impress, at right we have astounding example,  usually sea ice melts when the ice pack is scattered, and pans of ice are prey to surrounding warm surface water.  Not in this case, sea ice is melting from within the pack.  The loop sequence below captured the jutting ice pack at centre (right);



   This middle of Pack melting is unusual, but strongly suggests very thin sea ice.  NASA EOSDIS July 15-19 2020.  Now this helps explain the stubbornly persistent High pressure over the Arctic Ocean.  Usually at what I call "Arctic switchover"   a winter/summer switching of roles occurs between anticyclones and lows,  whereas cyclones tend to gravitate where its coldest,  as opposed to Highs which tend to place themselves at the warmest spots,  top of Greenland excluded due to obvious reasons.  Switchover 2020 occurred in good time at about mid June,  but at end of June appeared this anticyclone where a cyclone should be.  One explanation was very hot advection from Siberia, the other reason is that the sea ice from Pole to Russia is exceptionally thinner.  This would allow a High to settle over sea ice, having a surface  always colder than land, but thinner sea ice has another player,  thermal radiation from the underlying sea may very well be the key in allowing this High to exist, an Arctic High pressure system may be stable if literally underlying heat input is similar to land.  WD July 19, 2020

Friday, July 17, 2020

Laptev Sea melt madness, Goodbye Waves have no time to be artistic

~ Most dramatic record pace melting on Russian side of Pole
~Visual record shows particular "Goodbye Waves"


NASA EOSDIS July 12 to 17,  Laptev sea ice retreats at stunning speeds,  mostly by melting, as exemplified by Goodbye Waves,  not having a chance to twirl and be creatively beautiful.    Never noticed this before on such a wide scale.

East Siberian sea during the same time period,  thawing is just as frenetic,  the G. Waves  are likely from much thicker sea ice pans,  so the twisting around or final act of sea ice can be seen.   We can indirectly surmise what kind of ice it was by the last moments of its existence or life,  a pan of sea ice includes a world of beings all dependent of it.  WD July 17, 2020

Thursday, July 16, 2020

North Pole compression & pond lakes, Atlantic Front open water intrusion

~The current record pace sea ice melting has a significant wind component. 

NASA Eosdis recent July 13-16 North Pole look was granted by lesser cloud cover.  What was observed is sea ice moving towards North of Alaska,  along with huge top of sea ice lake ponds.
Compressed sea ice by the persistent wind driven flow.  Any change of winds would trigger decompression, wide open features are just about to start.


Just Northeast of Spitzbergen Island, North Atlantic front action continues unabated, at remarkable speeds (July 7 to 16).   With a mixture of sea ice movement and rapid melting exemplified by "Goodbye Waves" remnants of about to completely vanish pack ice swiftly thawed by very warm sea surface temperatures.  Again a different wind venue would trigger even more melting because of the just created and warming sea water.   WD July 16 , 2020

Sunday, July 12, 2020

Atlantic front; very rapid melting

~A look at some record pace melting. 

   EOSDIS July 11-12   2020 Just North of Spitzbergen,  look and place mouse pointer on the "Goodbye Wave Peninsula"  lower centre right of animation,  the basic nature of Goodbye Waves stages of melting demonstrate huge pans of sea ice, 1 km wide vanishing in a day.  The winds on July 12 were light in the photo sector.  The sea current is somewhat rapid,  approximately 1 km and hour towards the NW.  A weak cloud cover is also key in more rapid thawing at this time of summer.   The same speedy liquifying can't be repeated,  slowed and  hampered by denser pack ice (colder sea surface ) and denser clouds near Franz Jozef Islands.  WD July 12, 2020