Saturday, May 18, 2019

Unrecognizable in 21 years, warming evolution of the Northern world climate

~Comparing major sea ice melt years  reveals a much mangled atmosphere and icescape 
~The Arctic Atmosphere is very closely linked with sea ice morphology
~2019 outlook for sea ice has never been more grim

Arctic winters end in late April,  so it is appropriate to look at winters imprint on the Global Northern Hemisphere:

NOAA daily composites,  the real imprint of winter can be found right after peak cooling period, May 1-7 offers a glimpse:

1998 the then warmest year in history, really marked the start of visual from space Arctic Sea ice extent decline.   Observe the massive North Pole centric CTNP (Cold Temperature North Pole),  this was more usual when Arctic Ocean was covered by a much thicker sea ice canopy.

2007   The first really massive melt was just ahead, note the missing CTNP.  And note as well the faint outline of two vortices one over each continent. 

2012 the largest sea ice extent drop in history was to come,  note the early ridging bands taking shape within a much shrunken Polar Vortex compared to 1998.  These apparent waves or bands have a tendency to bring up warmer cyclones from the South or tend to create "Omega Blocks"  with persistent stable anticyclones.  Note the diminished size of the Polar Vortex as well.  

2016 with the biggest El-Nino in history just past,  a great year to compare with 1998.   We can identify the wavier appearance of the Polar Vortex, along with "rogue" vortices ,  smaller but colder, quite a ways displaced from the North Pole as with 1998.  The ice in 2016 was quite thinner than 1998,  hence more heat from Arctic Ocean tendency to split the main coldest vortice in 2,  usually moving them Southwards on each continents of the Northern  Hemisphere. 

2019 has the most disfigured Polar Vortex of all,  almost with 3 distinct ridges having within   smaller colder vortices again over the continents,  The Jet Stream was equally wavy for most of winter just past.  These ridges tend to accelerate cyclones Northwards or keep anticyclones very steady.  

   The most distinguishable feature between 1998 and 2019 is the disintegration or crumpling of the Polar Vortex coming along, not by coincidence,  with the drastically diminished presence of sea ice in volume and extent.  The term "Climate Change"  is now literally readily observable not only in the atmosphere but on and in the oceans.

     The end result of all this change can be observed by the rapid flow of much thinner broken up sea ice,  which if we are fortunate, can flow within the Arctic Basin,  but any massive favorable weather pattern may reproduce a bluer than ever Arctic Ocean, never seen before wide expanses of water,  at any given melt season.   It is not just a matter of time when there will be less than 1 million kilometer square of sea ice come September,  it is a matter of luck that it did not happen,  the greatest ally of ice as well are summer clouds, but if the temperature dew point spread widens from warming,  thinning clouds and or especially vanishing  ice enhanced fog will allow a far greater solar input.  Chances for 2019 having the worse melt in history are extremely favorable because the winter imprint of cold was lacking and there is not much sea ice cohesion left, again it is best if there was a summer El-Nino,  despite the counter intuitive warming El-Nino implies,  without summer clouds the North Pole will be a sea faring waypoint.  WD May 18, 2019 

Tuesday, May 14, 2019

Clouded Global heat transfers: from equator to North Pole

~Winter heat transfer between ENSO and the North Pole was usually in tandem with sea ice volume and extent.  La-Nina more sea ice,  El-Nino less sea ice. 
~Current 2019 Arctic sea ice extent is often very similar or worser than 2016,  which had a January with a very powerful El-Nino,  a fascinating fact. 

      In Arctic pure darkness of the long night,  only clouds prevents a massive cooling,  stopping very thick accretions of sea ice: 

      January 2016 equatorial Pacific spawned more clouds all over the world. In the Arctic this meant 
less sea ice,  it was so.  January 2018 had a small La-Nina,  it meant less Arctic clouds,  more sea ice,  it was so,  but not by much.  Same story January 2019,  a neutral ENSO or very light El-Nino,  less clouds,  implies more sea ice than same period 2016,  not so,  current 2019 sea ice extent is competitive or often smaller than 2016.   Less sea ice with a cooler than 2016 planet,  a contradiction,  translation:  heat was transferred to the North mainly in Arctic sea water, over time it has given a net increase in Arctic Ocean warmth.   Despite favorable conditions for ice accretion,  sea ice volume goes down.  Creating a feedback loop,  spring and summer sun has more dark water to warm. 

The Arctic atmosphere merely reflects this current heat scenario:

NOAA daily composites 600 mb temperatures, a very close representation of average temperature of the entire troposphere.  Spanning 4 to 11 May,  with respect to Polar Vortex strength,  2016 closely resembles 2019.  Yet 2019 has had nowhere the same heat input from the Equator.  2018 had a very strong Canadian Arctic Archipelago vortice within the Polar Vortex,  this was caused by a reduction of clouds and heat over the Northern American continent,  2018 sea ice extent was still reduced, prevented the Polar Vortex from being much fiercer.  However, the story here is the dwindling sea ice despite favorable conditions which should prompt a recovery.  The heat,  it seems,  is well dispersed throughout all the oceans of the planet, in turn,  extra heat within the Arctic system is reshaping the climate of the entire Northern Hemisphere.  WD May 14, 2019

Saturday, May 11, 2019

Post Collapse III, flipping the summer forecast to opposite outlook

~North America's initial weather appears as EH2r annual summer projection
~North American great plains warm as a result of late April CTNP disintegration

  We remember NOAA's cooler in the central plains May June July temperature outlook:

Since EH2r expected not as strong as last year strongest CTNP vortice,  2019 vortice withered away remarkably fast,  this made the Great Plains not as cool as both NOAA and ECMWF suggested (here was EH2r criticism).

       One reasoning behind not agreeing with the great models outlook was the Canadian Main CTNP (Cold Temperature North Pole) did not have a strong prolonged build up similar to winter of 2017-18.  The initial sun disk readings taken in February to Mid-March 2019 were in 4th place warmest,  then vertical sun disks dramatically shrunk in size severely reducing average elevation decimal levels sun disk sizes to last place,  I was aware of monitoring a smaller vortice within the Tropospheric Polar Vortex,  smaller vortices are usually colder.  This changed my estimate of summer climate to come, from similar to last year, to different,  warmer in most regions.

   The latest GFS short term forecasts call for the opposite of the longer term outlook above:

   If the main driver of weather in North America weakens,  so does the Eastward circulation,  this means that land surfaces have greater chances to dry up, especially in the middle of the continent.
ENSO is still a main concern,  this weather may change,  but still ENSO lingers,  hesitates to take a turn up or down on the warm side.  This latest weather picture may last and build up much hotter. WD May 11 2019

Thursday, May 9, 2019

POST collapse II, models are getting the picture

~There seems to have been two responses to main CTNP  vortice collapse
~One immediate, very fascinating,  one was slower movement of systems
~The other longer term,  a picture of things to come

When a deep cold supreme vortice within the Arctic Tropospheric Polar Vortex collapses, it seems there may be an immediate response on a grand scale, a shock to the system if you like. Similar to center of a hurricane eye wall reorganization. The immediate response seems fuzzy , but I suspect a sudden but very brief warming, followed by a more obvious slowing of circulation.  Of which,  wherever you are in the Northern Hemisphere,  the good or bad weather prolongs a bit more.
Toronto for instance,  is under the clouds along a good chunk of Eastern North America,    this will not stop suddenly,  but will gradually fall under the spell of clearer dry skies (as most of snow vanishes completely further North).

  For May 14  GFS changed its mind 3 times within 3 days of forecasting,  finally settling for a significant warming North of Ontario with a lot warming in Central USA.  Looking further:

By the 21st, the forecast Makes North Central Canada as warm as Florida while the clouds cool the central coasts of North America, this is a bit of a precursor of the climate to come. WD May 9, 2019

Monday, May 6, 2019

Post collapse circulation model responses, ECMWF seems a bit more on top of it

  Already May 6 Toronto forecast will be off with other models based forecasts,  underestimated at least 4 degrees colder.  But ECMWF short term is responding well to recent massive Arctic warm up.  What is left of the Canadian coldest vortice is more centered in the SW Arctic,  a place already with less snow on the ground.  Is set to extermination if stable there. 

600 mb temperatures forecast would be more ideal,  nothing is perfect!  But ECMWF has some prowess,  already displaying a greater warming throughout North America for the next 10 days. 

GFS not so fast on its feet:

           Temperatures upwards not as warmed as ECMWF but warming.  I got the impression the models don't weigh as much importance to the Arctic as they should.  WD May 6 2019

Saturday, May 4, 2019

COLLAPSE, CAA Cold Temperature North Pole warming much faster than last year

~As expected ,  Canadian Arctic Archipelago has smaller Polar Vortex vortice than last year.
~Tropospheric Polar Vortex is collapsing as well.
~The key,  thinner sea ice, has shaped the coming summer climate for the entire Northern Hemisphere

2018 (left) tropospheric Polar Vortex covered a wider area and had a very strong Canadian Arctic Archipelago vortice which lasted a long time (of all vortices within the Polar Vortex).  Not by accident,  a good chunk of atmosphere is warmer in the Pacific Quadrant of the Arctic Ocean, which turns out to have thinner sea ice.   To date, this apparent collapse of the CAA vortice continued,  with extreme warming on the ground:
The look of the  NOAA 7 day surface temperature anomaly has nothing in common with today. 
The Arctic surface warming incurred since end of April has been astoundingly rapid.  This implies cold air centers of the Polar Vortex were smaller,  as I observed at my yearly summer projection,  the build up to this is from the strange effect found in smaller vortices,  which are often much colder than within the rest of the Polar Vortex, in addition to the overall construct of prolonged cold periods,  reinforce longevity of the PV.  In the case of 2018-19 winter,  the cold started strong first in North Central Russia, spread out slowly over the entire Arctic,  Canadian side had a fierce cooler period later, not as deep frozen as last year during end of late winter.   

   The current collapse of cold in the Arctic has significant implications further South,  which may not have been grasped by the models:

   Accuweather extended May 2019 temperature forecast for Toronto,  looks lame given +15 C fast warming covering a huge chunk of the Arctic,  will check in a week to see if AI has incorporated ongoing events in the High North correctly.  WD May 4 2019

Sunday, April 28, 2019

Stratospheric temperatures are greatly influenced by the presence of Ozone.

~The start of the stratosphere is where ozone concentration begins rising significantly
~This creates a massive world wide upper inversion called the tropopause
~A cold ground air is not necessarily under a  high stratosphere deep freeze
~The best temperature level to judge the troposphere is 600 mb

   The tiny bit of atmospheric ozone in our world  has a huge influence ,  not only in keeping us safe from harmful UV light, but seems largely forgotten as the main greenhouse gas warming the stratosphere.  A lack of Ozone basically cools the stratosphere,  the famous CFC driven ozone holes
exist at about -80 C.   Too much ozone warms the stratosphere.  Not to confuse with sudden Stratospheric warming,  which does occur not too often ,  but some place too much emphasis on it.   Stratospheric ozone is key in stratospheric temperatures.   Some people strongly believe that stratospheric temperatures influence the troposphere.  Let's look at this:

April 25 2019,  NOAA daily composites, 600 mb temperature is very close to the temperature of the entire troposphere.  We see here a spring time  Tropospheric Polar Vortex ,  which its coldest vortices in dark purple.  So as a few experts like to say the stratosphere influences this.   Not so, the warmest 50 mb temperatures are right above the coldest Cold Temperature North Poles of the troposphere:

Is warmest, -44 C near the center of the locations having more ozone,  while over Europe,  at 50 mb level, it s -61 C  where there was far less ozone:

       The areas with the least ozone are in this case the warmer surface places.    So the stratosphere in  does not  seem to cool the troposphere.  Therefore emphasis on any explosive stratospheric warming event,  as rare as they may be,  must be taken that what happens in the Stratosphere,  often stays there. WD April 28 ,  2019

Friday, April 26, 2019

NOAA & ECMWF AI vs EH2r long range summer projections

~Astounding if not fascinating outlook differences
~El-Nino or ENSO is not the only player on planet Earth

   First,  EH2r outlook audaciously looks quite different than the 2 largest forecasting giants,  NOAA heavily relies on ENSO    :

This temperature chart for May June and July looks amiss.   It relies on ENSO dominating cloud coverage and therefore affect Midwest US temperatures,  which looks good for May ,  not at all,  according to EH2r for June and July.   First of all,  if there are more clouds coming from ocean sources,  the coast would be cooler :

  NOAA AI is in the clouds!   According to EH2r, not going to happen,  which unlike NOAA makes midwest USA June July quite hot because the flow will indeed come from the oceans,  but on West coast clouds keeps things cooler,  clouds dry out migrating East.  On SW coast I don't think there will be any dominant circulation,  favoring Death Valley records NOAA got this covered.  On East coast the simmering dry Midwest heat should  move to the Northeast coast making it indeed warmer than usual,  the Southeast should suffer same fate as SW coast,  no general circulation especially from July August  and more precipitation records should occur.

ECMWF surprisingly has some similar outlooks:

ECMWF long range likely has the NE Pacific temperature blob right.  North America warmer temperature anomalies are a bit illogical as well.  SW USA cool is perhaps cloud driven,  but this suggests something strong moving things Eastwards,  From the stand point of the Midwest not being dry and hot,  quite unlikely.  East coast of North America way cooler than should be.  Since EH2r projection makes the waning Polar Vortex smaller than summer 2018,  which had Midwest June July quite warm.  so I expect this same area warmer than 2018.    Western Europe may be off for JJA,  the Gulf Stream cyclones should mainly whisk to the NW of the  UK, this brings dry heat from Espana.   Basically I think ECMWF model is heavily influenced by ENSO.  Which is fine,  only if ENSO is foreseen correctly.  However,  ENSO's range is huge,  and there was no signals of a pending stronger El-Nino.   On the right bright midnight sun side,  the Arctic projection looks good but for over estimated cooler Tundra zones,  and North Japan is off as well.  WD April 26 2019

Sunday, April 21, 2019

2019 Annual end of Spring and Summer projection, by unorthodox means -trying to grasp rapidly changing climate

~Projection very much similar to last year ,  except there are some strange features which suggest subtle differences.
~Most ENSO models call for El-Nino,  but all Arctic data suggest La-Nina conditions
~Extraordinary Canadian High Arctic dominant Cold Temperature North Pole returns 2nd consecutive year in a row,  a statistical improbability.
~Last years projection was again extremely successful except for sea ice minima extent,  as usual.
~2019 wont be warmest year in history,  likely # 4 to 6 for the Northern Hemisphere.


    We start by last years  Minima sea icescape,  particularly interesting because the refreeze stalled..
Melting and diminishing extent as late as October 3.  The course of winter weather was set,  the bulk of sea ice was North Pole centric,  triggering a High Pressure spreading out from the Pole. This caused a distinct early Polar Vortex,  warming and keeping the Northern Urals snow free and especially Bering Strait kept continuously warmed by North Pacific warmer flow.  The snow free North Central Russia  eventually froze more rapidly,  vast tracks of exposed lands with the sun less than 20  degrees in sky,  night longer than day,  a strong North Central Russian vortex subsequently continued the Bering sea environs warming,  nearly for the entire winter.  Thus Beaufort sea ice Northwards to Pole set thinner,  ready for onslaught of the higher sun.  The entire winter was first mainly dominated by North Central Russian Vortex,  very slowly ceding dominance to the Canadian Arctic as late as now.  The warmth,  especially onto Alaska was  again a main feature of winter.   The broken up sea ice of summer 2018 filled the Canadian Archipelago channels,  cancelling huge cruise ships from accomplishing the NW passage,  an impossible adventure in the not so distant past,  now a routine schedule voyage,  was cancelled by extra melting.  Mid-winter  Pole centric vortex cut off snow carpeting Arctic Ocean sea ice as much as preceding winter. Therefore increasing accretion of Pole region sea ice during the long night..  In North America,  winter came late and eventually fierce by same reasons,  especially with lands not covered by snow,  warm at first,  eventually bitting cold since land looses heat quicker than land covered by thicker snow layers.  As a result the same thinly covered by snow lands warmed up faster than the regions with greater snowfall, mainly Eastern Canada.  The duality of warmth in the West versus colder in the East fueled the Canadian vortice to become more extreme,  yet smaller than last year.  It is known,  smaller vortices within the Polar vortex are usually colder,  even as late as April a strong Canadian side vortice dominated the High Arctic.  This late event was not hampered by clouds,  a mainstay of Arctic April weather,  hence a strange very unusual "Big blue"  sky event ,  the biggest in more than 20 years was created, strange since a modest  El-Nino is on,  unlike 2017-18 when it was more borderline La-Nina:

 Mid April Sea Surface Temperatures anomalies,  2015 vs 2019,  both official El-Ninos,  2015 to become warmest in history,  2019 ,  not offering any strong warmer or colder trending,  but there is a difference,  2015 had signals sent all the way to the Arctic,  2019 far less, Archipelago weather from January onwards was remarkably cloud free.  Very unlike 2015.  2019 Archipelago cloud free skies strongly suggest an ongoing La-Nina or Neutral conditions.

   The main difference between a true trending  El-Nino vs La-Nina sky is the lack of clouds,  especially the very high ones,  2015 had more,  seen darkening twilight,  2019 same Mid-April  less to none, very good condition to cool the atmosphere deeply.   Yet 2019 SST charts suggest El-Nino.  As if post massive El-Nino of 2016 La-Nina or trending towards La-Nina is happening,  even though the charts show no such thing. 
Look carefully at this NOAA chart,  97-98 and 2009-2010 El-Nino  were followed by significantly long La-Ninas,  not so for largest 2015-16 El-Nino.  This strangeness suggest 2 possibilities,  a truly big La-Nina is coming,  or sst anomalies calibration  need a correction since Earth Oceans have warmed a lot, even since 1998  (by about 0.5 C).   I tend to think it is the latter,  the Arctic has had 2 La-Nina like late winters in a row.  But there is also the shrinking Polar Vortex to consider.  Namely not near Alaska   having March 2019 being warmest in history temperatures,  +8.8 C above average.   It is strange,  but true that a smaller vortice or a rogue vortice about to detach from the Polar Vortex, can be extremely cold.  In our current Canadian Archipelago case,  the reason for this is a very long period of clear air,  with sun appearing after the long night insufficiently high in the sky to warm up a snow laden polar land and sea surface.  In the CAA, the clear sky period started in January till today,  more than 3 months and a half long.  

The continuing  shrinking late winter early spring Vertical sun disk size anomaly.....

  What is the score?   

     0, that is right,  0 % average vertical sun disk size growth the second year running,  a statistical near improbability,  given every usual late winter early spring had a season to season variance for each 17 preceding seasons.   

                                             Year              VSDM        Rank
                                             2016                 19                1 

                                             2015                 14                2
                                             2006                 11                 3
                                             2013                  9                 4
                                             2011                  9                 5
                                             2010                  9                 6 
                                             2009                  9                 7
                                             2005                  9                 8
                                             2012                  8                 9
                                             2017                  5               10
                                             2014                  4               11 
                                             2008                  4               12
                                             2007                  4               13
                                             2004                  4               14
                                             2002                  2               15
                                             2003                  1               16
                                             2019                  0               17
                                             2018                  0               18

     2019 shares  the bottom of the pack,  of 120 sun elevation mean decimal levels,  not one was above average,  again compared to 19 in 2016 right after peak strongest  El-Nino warming in recent history.  2019 was arduous with data acquisition of nearly 640 sun disk observations,  a record exceeding 2008 which was a true La-Nina trending late winter.   Vertical sun disk expand in size when the upper atmosphere is warm,  shrink when colder, these measurements include vast swats of the atmosphere, from 210 to even more than 1295 Kilometers.  Despite March 2019 being warmest month in history worldwide,  the center of coldest was right here in the Canadian Archipelago,  when the sun disks shrank in size as the sun is getting higher in the sky. The table above reads almost like ENSO trends or peaks.  So it is a very significant piece of information, having forecast powers, especially for the Northern Hemisphere temperature record,  suggesting in advance that 2019 will be about 4th to 6th warmest in history, similar to last year.    But the size, or footprint of cooling was smaller than last year.  This implies different circulation patterns:

Prognosis projections
                                        APRIL-MAY 2019
    Alaska will finally share a bit of winter namely because the Cold Temperature North Pole "C1",  which grew colder  even with the rising sun, literally defied joining the warmest month in history just past.   The main story for sea ice here is the very persistent High pressure over the Arctic Ocean Gyre,    keep in mind Fram Strait had sea ice dumping growth since October 2018.    Therefore sea ice extent is all time lowest at present,  also the Bering sea very little extent contribution shaped this unfavorable for sea ice scenario.  Note the wide area "C1" circulation entails.  all the way to Florida.  Its circulation horizon.  Obviously Midwest North America starts colder along with Eastern North America,  because there was more snow, inviting the CTNP to wander about Southwards.  The jet stream can only weaken and migrate Northwards from here.  

                                                    JUNE-JULY 2019
June-July circulation horizon shrinks,  midwest North America warms a whole lot with mainly drier air.  Last summer's record warm Eastern Canada USA summer heat will be exceeded.   Barents and Kara sea will be spared the presence of the higher sun by clouds.  The switchover from persistent anticyclone to cyclone over the Arctic Ocean Gyre with persistent cyclone will be not lasting as long as last year.  The North Pole will get a healthy dose of insolation at peak of sun elevation.  The persistent cyclone over the Arctic Ocean Gyre will have "see through" characteristics, not necessarily cooling the air below as much as it normally should. 

The net peak of heat impact of the higher sun would be to shrink the Cold temperature North Pole to barely exist at North of Greenland and Ellesmere Island.  Now the influence of overall  more heat than compared to 10 years ago or so  will be a generally slow circulation world wide.  The impact of a much smaller CTNP horizon have already been observed to a lesser extent in 2017,  hurricane Harvey lack of mobility  being a good example.   The further away areas from the CTNP  will languish with no circulation but by the grace of large anticyclones not moving quite readily,  it does not look wetter for California.  The net general weather scene will be very similar to summer 2018 but with lesser circulation primarily due to encroaching stronger heat signal from land and ocean.   Again tornadoes should be hopefully less numerous than average and more prominent Northwards.  The very weird, if not expected by AGW,  ENSO not reverting to a deep cold  La-Nina, especially after the great El-Nino of 15-16,  means also lesser in numbered hurricanes but dangerous by them not moving Northeastwards as much.   Not so for typhoons, again readily guided and supercharged by doldrums or weaker circulation on top of a much bigger Pacific. 

    Now with the easiest projections out of the way,  let's try , once again to forecast the sea ice minima:

   Last summers sea ice extent projection failed because I didn't take into account a particularly strong Gyre current  ,  which I knew about,  especially at peak melting period.  However, sea ice was very much churned by this strong current massively replenishing Beaufort sea with broken up ice,  the key not taken into consideration factor was fluid mobile pack ice, which did have a persistent cyclone above at peak insolation period (as expected),  this slowed overall melting. The difference between 2018 and 19  is a thinner ice footprint resulting from more prominent winter warming over the same area.   This means that even with switchover from persistent High to a Low over the Gyre ,  the sea ice should vanish more since it is thinner from 2019 ice extent maxima extent onwards, which is currently at all time lowest expansiveness ever.   Sea ice should look grim come end of September,  near or lesser than 2012 extent,  with next to North Pole navigable by non ice breaking ships, with Northeast Passage opening first followed by Northwest passage more open than,  not as clogged as last year,  but not readily navigable.  WD April 21 2019

Thursday, April 11, 2019

Arctic sunset like none other, prettier than black holes, but eerily similar,

This is a sunset.......  With sun light morphed by gravity waves.... 

     Called a Wegener blank strip event ,  where sunlight gets cut off due to extra long atmospheric "ducts" some spanning  more than 1000 kilometers,  similar to fiber optics,  but consists of more or less flat steep inversion layers.  Some ducts are shorter in length and funnel whatever object or photons there is  at the beginning ,  at the other end of its "fiber optic "  air duct tunnel.  Named for and theorized by Alfred Wegener,  the same scientist who proposed tectonic plates science.    The atmosphere is not necessarily stratified in straight layers.   This is a great complexity which computer models can't duplicate with ease.    Atmospheric refraction is very much similar to Black hole optics,  is equally nearly  identical in appearance with Einstein;'s gravitational lensing.   Refraction techniques are also used to find dark matter.   Horizon refraction on Earth is not very well understood and may help explain refraction cousins found everywhere in the universe.   WD April 11, 2019